rilpoint_mw113

BRL-CAD

Line 8: Line 8:
A particular strength of the package lies in its ability to build and analyze realistic models of complex objects using a relatively small set of "primitive shapes." To do this, the shapes are manipulated by employing the basic Boolean operations of union, subtraction, and intersection. Another strength of the package is the speed of its raytracer, which is one of the fastest in existence. Finally, BRL-CAD users can accurately model objects on scales ranging from the subatomic through the galactic and get "all the details, all the time."
A particular strength of the package lies in its ability to build and analyze realistic models of complex objects using a relatively small set of "primitive shapes." To do this, the shapes are manipulated by employing the basic Boolean operations of union, subtraction, and intersection. Another strength of the package is the speed of its raytracer, which is one of the fastest in existence. Finally, BRL-CAD users can accurately model objects on scales ranging from the subatomic through the galactic and get "all the details, all the time."
 +
 +
Although BRL-CAD has been used for a wide variety of engineering and graphics applications, the package's primary purpose continues to be the support of (1) ballistic and (2) electromagnetic analyses. Accordingly, developers have found CSG modeling to be the best approach in terms of model accuracy, storage efficiency, precision, and speed of computational analysis.
 +
 +
While polygonal and boundary representation (B-rep) modeling often focuses on just the surfaces of objects, CSG modeling focuses on the entire volume and content of objects. This gives BRL-CAD the capability to be "more than skin deep" and build objects with real-world materials, densities, and thicknesses so that analysts can study physical phenomena such as ballistic penetration and thermal, radiative, neutron, and other types of transport.

Revision as of 06:34, 14 March 2011